Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2739: 275-299, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38006558

RESUMO

This chapter gives a brief overview of how to screen existing host genomic data for the presence of endosymbionts, such as Wolbachia. The various programs used provide test examples, and the corresponding manuals and discussion boards provide invaluable information. Please do consult these resources.


Assuntos
Wolbachia , Genoma Bacteriano , Genômica , Filogenia , Simbiose/genética , Wolbachia/genética
2.
BMC Microbiol ; 22(1): 209, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36042402

RESUMO

BACKGROUND: Maternally inherited bacterial symbionts are extremely widespread in insects. They owe their success to their ability to promote their own transmission through various manipulations of their hosts' life-histories. Many symbionts however very often go undetected. Consequently, we have only a restricted idea of the true symbiont diversity in insects, which may hinder our understanding of even bigger questions in the field such as the evolution or establishment of symbiosis. RESULTS: In this study, we screened publicly available Lepidoptera genomic material for two of the most common insect endosymbionts, namely Wolbachia and Spiroplasma, in 1904 entries, encompassing 106 distinct species. We compared the performance of two screening software, Kraken2 and MetaPhlAn2, to identify the bacterial infections and using a baiting approach we reconstruct endosymbiont genome assemblies. Of the 106 species screened, 20 (19%) and nine (8.5%) were found to be infected with either Wolbachia or Spiroplasma, respectively. Construction of partial symbiotic genomes and phylogenetic analyses suggested the Wolbachia strains from the supergroup B were the most prevalent type of symbionts, while Spiroplasma infections were scarce in the Lepidoptera species screened here. CONCLUSIONS: Our results indicate that many of the host-symbiont associations remain largely unexplored, with the majority of associations we identify never being recorded before. This highlights the usefulness of public databases to explore the hidden diversity of symbiotic entities, allowing the development of hypotheses regarding host-symbiont associations. The ever-expanding genomic databases provide a diverse databank from which one can characterize and explore the true diversity of symbiotic entities.


Assuntos
Lepidópteros , Spiroplasma , Wolbachia , Animais , Filogenia , Spiroplasma/genética , Simbiose/genética , Wolbachia/genética
3.
Sci Rep ; 11(1): 24499, 2021 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-34969947

RESUMO

Models estimate that up to 80% of all butterfly and moth species host vertically transmitted endosymbiotic microorganisms, which can affect the host fitness, metabolism, reproduction, population dynamics, and genetic diversity, among others. The supporting empirical data are however currently highly biased towards the generally more colourful butterflies, and include less information about moths. Additionally, studies of symbiotic partners of Lepidoptera predominantly focus on the common bacterium Wolbachia pipientis, while infections by other inherited microbial partners have more rarely been investigated. Here, we mine the whole genome sequence data of 47 species of Erebidae moths, with the aims to both inform on the diversity of symbionts potentially associated with this Lepidoptera group, and discuss the potential of metagenomic approaches to inform on host associated microbiome diversity. Based on the result of Kraken2 and MetaPhlAn2 analyses, we found clear evidence of the presence of Wolbachia in four species. Our result also suggests the presence of three other bacterial symbionts (Burkholderia spp., Sodalis spp. and Arsenophonus spp.) in three other moth species. Additionally, we recovered genomic material from bracovirus in about half of our samples. The detection of the latter, usually found in mutualistic association to braconid parasitoid wasps, may inform on host-parasite interactions that take place in the natural habitat of the Erebidae moths, suggesting either contamination with material from species of the host community network, or horizontal transfer of members of the microbiome between interacting species.


Assuntos
Mariposas/genética , Mariposas/microbiologia , Simbiose , Animais , Bactérias/genética , Genoma de Inseto , Lepidópteros/genética , Lepidópteros/fisiologia , Mariposas/fisiologia , Sequenciamento Completo do Genoma , Wolbachia/genética , Wolbachia/fisiologia
4.
Genome Biol Evol ; 13(5)2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33885769

RESUMO

Some animal groups, such as stick insects (Phasmatodea), have repeatedly evolved alternative reproductive strategies, including parthenogenesis. Genomic studies have found modification of the genes underlying meiosis exists in some of these animals. Here we examine the evolution of copy number, evolutionary rate, and gene expression in candidate meiotic genes of the New Zealand geographic parthenogenetic stick insect Clitarchus hookeri. We characterized 101 genes from a de novo transcriptome assembly from female and male gonads that have homology with meiotic genes from other arthropods. For each gene we determined copy number, the pattern of gene duplication relative to other arthropod orthologs, and the potential for meiosis-specific expression. There are five genes duplicated in C. hookeri, including one also duplicated in the stick insect Timema cristinae, that are not or are uncommonly duplicated in other arthropods. These included two sister chromatid cohesion associated genes (SA2 and SCC2), a recombination gene (HOP1), an RNA-silencing gene (AGO2) and a cell-cycle regulation gene (WEE1). Interestingly, WEE1 and SA2 are also duplicated in the cyclical parthenogenetic aphid Acyrthosiphon pisum and Daphnia duplex, respectively, indicating possible roles in the evolution of reproductive mode. Three of these genes (SA2, SCC2, and WEE1) have one copy displaying gonad-specific expression. All genes, with the exception of WEE1, have significantly different nonsynonymous/synonymous ratios between the gene duplicates, indicative of a shift in evolutionary constraints following duplication. These results suggest that stick insects may have evolved genes with novel functions in gamete production by gene duplication.


Assuntos
Duplicação Gênica , Insetos/genética , Animais , Feminino , Perfilação da Expressão Gênica , Insetos/classificação , Insetos/citologia , Insetos/metabolismo , Masculino , Meiose , Filogenia , Transcriptoma
5.
Nature ; 584(7821): 403-409, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32760000

RESUMO

The tuatara (Sphenodon punctatus)-the only living member of the reptilian order Rhynchocephalia (Sphenodontia), once widespread across Gondwana1,2-is an iconic species that is endemic to New Zealand2,3. A key link to the now-extinct stem reptiles (from which dinosaurs, modern reptiles, birds and mammals evolved), the tuatara provides key insights into the ancestral amniotes2,4. Here we analyse the genome of the tuatara, which-at approximately 5 Gb-is among the largest of the vertebrate genomes yet assembled. Our analyses of this genome, along with comparisons with other vertebrate genomes, reinforce the uniqueness of the tuatara. Phylogenetic analyses indicate that the tuatara lineage diverged from that of snakes and lizards around 250 million years ago. This lineage also shows moderate rates of molecular evolution, with instances of punctuated evolution. Our genome sequence analysis identifies expansions of proteins, non-protein-coding RNA families and repeat elements, the latter of which show an amalgam of reptilian and mammalian features. The sequencing of the tuatara genome provides a valuable resource for deep comparative analyses of tetrapods, as well as for tuatara biology and conservation. Our study also provides important insights into both the technical challenges and the cultural obligations that are associated with genome sequencing.


Assuntos
Evolução Molecular , Genoma/genética , Filogenia , Répteis/genética , Animais , Conservação dos Recursos Naturais/tendências , Feminino , Genética Populacional , Lagartos/genética , Masculino , Anotação de Sequência Molecular , Nova Zelândia , Caracteres Sexuais , Serpentes/genética , Sintenia
7.
Genome Biol Evol ; 11(4): 1293-1306, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30957857

RESUMO

Exposure to low temperatures requires an organism to overcome physiological challenges. New Zealand weta belonging to the genera Hemideina and Deinacrida are found across a wide range of thermal environments and therefore subject to varying selective pressures. Here we assess the selection pressures across the weta phylogeny, with a particular emphasis on identifying genes under positive or diversifying selection. We used RNA-seq to generate transcriptomes for all 18 Deinacrida and Hemideina species. A total of 755 orthologous genes were identified using a bidirectional best-hit approach, with the resulting gene set encompassing a diverse range of functional classes. Analysis of ortholog ratios of synonymous to nonsynonymous amino acid changes found 83 genes that are under positive selection for at least one codon. A wide variety of Gene Ontology terms, enzymes, and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways are represented among these genes. In particular, enzymes involved in oxidative phosphorylation, melanin synthesis, and free-radical scavenging are represented, consistent with physiological and metabolic changes that are associated with adaptation to alpine environments. Structural alignment of the transcripts with the most codons under positive selection revealed that the majority of sites are surface residues, and therefore have the potential to influence the thermostability of the enzyme, with the exception of prophenoloxidase where two residues near the active site are under selection. These proteins provide interesting candidates for further analysis of protein evolution.


Assuntos
Evolução Molecular , Ortópteros/metabolismo , Seleção Genética , Transcriptoma , Animais , Feminino , Masculino , Filogenia
8.
BMC Genomics ; 18(1): 884, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29145825

RESUMO

BACKGROUND: Stick insects (Phasmatodea) have a high incidence of parthenogenesis and other alternative reproductive strategies, yet the genetic basis of reproduction is poorly understood. Phasmatodea includes nearly 3000 species, yet only the genome of Timema cristinae has been published to date. Clitarchus hookeri is a geographical parthenogenetic stick insect distributed across New Zealand. Sexual reproduction dominates in northern habitats but is replaced by parthenogenesis in the south. Here, we present a de novo genome assembly of a female C. hookeri and use it to detect candidate genes associated with gamete production and development in females and males. We also explore the factors underlying large genome size in stick insects. RESULTS: The C. hookeri genome assembly was 4.2 Gb, similar to the flow cytometry estimate, making it the second largest insect genome sequenced and assembled to date. Like the large genome of Locusta migratoria, the genome of C. hookeri is also highly repetitive and the predicted gene models are much longer than those from most other sequenced insect genomes, largely due to longer introns. Miniature inverted repeat transposable elements (MITEs), absent in the much smaller T. cristinae genome, is the most abundant repeat type in the C. hookeri genome assembly. Mapping RNA-Seq reads from female and male gonadal transcriptomes onto the genome assembly resulted in the identification of 39,940 gene loci, 15.8% and 37.6% of which showed female-biased and male-biased expression, respectively. The genes that were over-expressed in females were mostly associated with molecular transportation, developmental process, oocyte growth and reproductive process; whereas, the male-biased genes were enriched in rhythmic process, molecular transducer activity and synapse. Several genes involved in the juvenile hormone synthesis pathway were also identified. CONCLUSIONS: The evolution of large insect genomes such as L. migratoria and C. hookeri genomes is most likely due to the accumulation of repetitive regions and intron elongation. MITEs contributed significantly to the growth of C. hookeri genome size yet are surprisingly absent from the T. cristinae genome. Sex-biased genes identified from gonadal tissues, including genes involved in juvenile hormone synthesis, provide interesting candidates for the further study of flexible reproduction in stick insects.


Assuntos
Tamanho do Genoma , Genoma de Inseto , Neópteros/genética , Animais , Feminino , Perfilação da Expressão Gênica , Ontologia Genética , Gônadas/metabolismo , Proteínas de Insetos/genética , Masculino , Anotação de Sequência Molecular , Sequências Repetitivas de Ácido Nucleico , Reprodução/genética , Caracteres Sexuais
9.
PLoS One ; 12(11): e0188147, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29131842

RESUMO

Animal reproductive proteins, especially those in the seminal fluid, have been shown to have higher levels of divergence than non-reproductive proteins and are often evolving adaptively. Seminal fluid proteins have been implicated in the formation of reproductive barriers between diverging lineages, and hence represent interesting candidates underlying speciation. RNA-seq was used to generate the first male reproductive transcriptome for the New Zealand tree weta species Hemideina thoracica and H. crassidens. We identified 865 putative reproductive associated proteins across both species, encompassing a diverse range of functional classes. Candidate gene sequencing of nine genes across three Hemideina, and two Deinacrida species suggests that H. thoracica has the highest levels of intraspecific genetic diversity. Non-monophyly was observed in the majority of sequenced genes indicating that either gene flow may be occurring between the species, or that reciprocal monophyly at these loci has yet to be attained. Evidence for positive selection was found for one lectin-related reproductive protein, with an overall omega of 7.65 and one site in particular being under strong positive selection. This candidate gene represents the first step in the identification of proteins underlying the evolutionary basis of weta reproduction and speciation.


Assuntos
Evolução Molecular , Ortópteros/genética , Seleção Genética , Animais , Haplótipos , Funções Verossimilhança , Nova Zelândia , Polimorfismo Genético , Transcriptoma
10.
PLoS One ; 11(6): e0157783, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27336743

RESUMO

Phasmatodea, more commonly known as stick insects, have been poorly studied at the molecular level for several key traits, such as components of the sensory system and regulators of reproduction and development, impeding a deeper understanding of their functional biology. Here, we employ de novo transcriptome analysis to identify genes with primary functions related to female odour reception, digestion, and male sexual traits in the New Zealand common stick insect Clitarchus hookeri (White). The female olfactory gene repertoire revealed ten odorant binding proteins with three recently duplicated, 12 chemosensory proteins, 16 odorant receptors, and 17 ionotropic receptors. The majority of these olfactory genes were over-expressed in female antennae and have the inferred function of odorant reception. Others that were predominantly expressed in male terminalia (n = 3) and female midgut (n = 1) suggest they have a role in sexual reproduction and digestion, respectively. Over-represented transcripts in the midgut were enriched with digestive enzyme gene families. Clitarchus hookeri is likely to harbour nine members of an endogenous cellulase family (glycoside hydrolase family 9), two of which appear to be specific to the C. hookeri lineage. All of these cellulase sequences fall into four main phasmid clades and show gene duplication events occurred early in the diversification of Phasmatodea. In addition, C. hookeri genome is likely to express γ-proteobacteria pectinase transcripts that have recently been shown to be the result of horizontal transfer. We also predicted 711 male terminalia-enriched transcripts that are candidate accessory gland proteins, 28 of which were annotated to have molecular functions of peptidase activity and peptidase inhibitor activity, two groups being widely reported to regulate female reproduction through proteolytic cascades. Our study has yielded new insights into the genetic basis of odour detection, nutrient digestion, and male sexual traits in stick insects. The C. hookeri reference transcriptome, together with identified gene families, provides a comprehensive resource for studying the evolution of sensory perception, digestive systems, and reproductive success in phasmids.


Assuntos
Digestão/genética , Perfilação da Expressão Gênica , Insetos/genética , Percepção Olfatória/genética , Reprodução/genética , Transcriptoma , Sequência de Aminoácidos , Animais , Biologia Computacional/métodos , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Insetos/química , Proteínas de Insetos/genética , Insetos/classificação , Masculino , Anotação de Sequência Molecular , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...